Abstract

Fourier ptychographic microscopy (FPM) is a computational optical imaging technique that overcomes the traditional trade-off between resolution and field of view (FOV) by exploiting abundant redundant information in both spatial and frequency domains for high-quality image reconstruction. However, the redundant information in FPM remains ambiguous or abstract, which presents challenges to further enhance imaging capabilities and deepen our understanding of the FPM technique. Inspired by Shannon's information theory and extensive experimental experience in FPM, we defined the specimen complexity and reconstruction algorithm utilization rate and reported a model of redundant information for FPM to predict reconstruction results and guide the optimization of imaging parameters. The model has been validated through extensive simulations and experiments. In addition, it provides a useful tool to evaluate different algorithms, revealing a utilization rate of 24%±1% for the Gauss-Newton algorithm, LED Multiplexing, Wavelength Multiplexing, EPRY-FPM, and GS. In contrast, mPIE exhibits a lower utilization rate of 19%±1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.