Abstract

A grating projection shape measurement system has been a commonly used method in the field of three-dimensional (3D) reconstruction in recent years, and global point cloud registration is a key step in this method. However, in the registration process, a large amount of low-precision overlapping redundant data (ORD) is generated between adjacent camera stations, which will seriously affect the speed and accuracy of later modeling. Therefore, how to eliminate these low-precision ORD is a major problem to be solved at present. Determining all overlapping 3D point pairs between two adjacent stations and deleting the points with low precision in the point pairs is the key to solving this problem. Therefore, based on an omnidirectional rotation measurement system, combined with the constraint relationships between the projection space and the acquisition space in the global registration process and the stereo-matching method of space conversion, an elimination algorithm for ORD with a two-dimensional (2D) phase constraint and a 2D pixel constraint is proposed. The experimental results show that the proposed algorithm can faster locate overlapping 3D point pairs between adjacent stations, with a higher elimination rate, and the accuracy of the overall point cloud is higher after the redundancy elimination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.