Abstract
In system design process, standby redundancy is a widely used technique to improve system reliability and availability. Typical standby techniques involve cold standby, hot standby, and warm standby. In this article, we investigate the repairable K-out-of- N system with mixed standby strategy containing both warm and cold standby. In the proposed system, each component can be in failure, cold, warm, and active states and the components are assumed to be repairable. The systems are modeled by continuous time Markov chain and the system long-run availability is derived. Furthermore, the optimal configuration of standby components in the system is studied considering both system availability and system running cost. Illustrative examples are presented to show the applications of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.