Abstract

In this paper, we propose an optimal redundancy allocation over a binary symmetric channel by using recent results on a tight approximation of codeword error probability in the finite blocklength regime. We evaluate the performance of the proposed algorithm over experimental data where slowly time-varying channel conditions were measured. The rationale of this study is to enhance the performance of underwater acoustic communications, for which low bit rates are available. The performance of the proposed scheme is compared with those obtained for a constant rate allocation and a rateless scheme. Results confirm that in the presence of a time-varying channel with long propagation delays, the utilization of a robust codeword is inefficient in terms of bandwidth used and energy per bit. However, as it results in a small number of retransmissions, it also guarantees short delivery delays. Furthermore, in the case where a lower reliability can be tolerated, the proposed scheme is more efficient and also has shorter delivery delays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.