Abstract

Circular cylinder has a strong adverse pressure gradient. When a fluid flows around the circular cylinder, it will produce aerodynamics force. One of them is the drag force which strong enough. Hence, control of flow need to reduce the drag force with placed a disturbance body on the upstream side. The purpose of this study is to compare and complement the experimental research of drag reduction that has been done before. The aerodynamics characteristics of the disturbance body and cylinder are modelled in two dimensions Unsteady-RANS by using fluent with turbulent flow. It is found that the mean drag and the lift fluctuation of the cylinder can be reduced by the upstream disturbance body with the s/D = 0.107 (here s and D are side length of the disturbance body and the diameter of cylinder, respectively). The position of the disturbance body is varied at (α) 20o, 30o, 40o, 50o and 60o with a gap distance (δ = 0.4mm). Reynolds number based on cylinder diameter ReD = 3.48x10 4 . Fluid interaction between circular cylinder with two disturbance body can increase boundary layer transition from laminer to turbulent to produce small drag. It is found that the characteristics of the flow significantly depend on the position of disturbance body. The optimum condition for the drag force reduction is at the angle α = 30o about 53 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.