Abstract

Over the years, the stable-model semantics has gained a position of the correct (two-valued) interpretation of default negation in programs. However, for programs with aggregates (constraints), the stable-model semantics, in its broadly accepted generalization stemming from the work by Pearce, Ferraris and Lifschitz, has a competitor: the semantics proposed by Faber, Leone and Pfeifer, which seems to be essentially different. Our goal is to explain the relationship between the two semantics. Pearce, Ferraris and Lifschitz's extension of the stable-model semantics is best viewed in the setting of arbitrary propositional theories. We propose here an extension of the Faber–Leone–Pfeifer semantics, or FLP semantics, for short, to the full propositional language, which reveals both common threads and differences between the FLP and stable-model semantics. We use our characterizations of FLP-stable models to derive corresponding results on strong equivalence and on normal forms of theories under the FLP semantics. We apply a similar approach to define supported models for arbitrary propositional theories, and to study their properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.