Abstract
Our previous research found that the nuclear factor-E2-related factor 2 (NRF2) protein was sustained activated in malignant transformation of human keratinocyte (HaCaT cells) caused by NaAsO2, but the role of NRF2 in it remains unknown. In this study, malignant transformation of HaCaT cells and labeled HaCaT cells used to detect mitochondrial glutathione levels (Mito-Grx1-roGFP2 HaCaT cells) were induced by 1.0 μM NaAsO2. Redox levels were measured at passages 0, early stage (passages 1, 7, 14), later stage (passages 21, 28 and 35) of arsenite-treated HaCaT cells. Oxidative stress levels increased at early stage. The NRF2 pathway was sustained activated. Cells and mitochondrial reductive stress levels (GSH/GSSG and NADPH/NADP+) increased. The mitochondrial GSH/GSSG levels of Mito-Grx1-roGFP2 HaCaT cells also increased. The indicators of glucose metabolism glucose-6-phosphate, lactate and the glucose-6-phosphate dehydrogenase (G6PD) levels increased, however Acetyl-CoA level decreased. Expression levels of glucose metabolic enzymes increased. After transfection with NRF2 siRNA, the indicators of glucose metabolism were reversed. After transfection with NRF2 or G6PD siRNA, cells and mitochondrial reductive stress levels decreased and the malignant phenotype was reversed. In conclusion, oxidative stress occurred in the early stage and the NRF2 was sustained high expression. In the later stage, increased NRF2/G6PD through glucose metabolic reprogramming induced reductive stress, thereby leading to malignant transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.