Abstract
The cracked phosphorylated nanoscale zerovalent iron (p-nZVI) has a strong electron selectivity towards the reductive removal of many heavy metal ions in waters. However, the unintended environmental risk after interactions with impurities or wastewater are not involved. Therefore, in this study, the phosphate group was successfully adsorbed into p-nZVI, and the cracked p-nZVI was successfully prepared with an optimal P/Fe ratio of 0.5%. The dosages of p-nZVI and temperatures were positively correlated with the removal rates. The removal process of Cr(VI) was more suitable by the Langmuir isothermal model(R2 > 0.99). The process of Cr (VI) (10, 20 and 40 mg/L) removal more fitted the pseudo first-order reaction model, while the process of Cr (VI) (60, 80 mg/L) removal more fitted the pseudo second-order reaction model. The Cr (VI) removal rates gradually decreased when the pH was increased. Dissolved oxygen slowed nanoiron reaction rates. The order of inhibition on the reactivity towards Cr(VI) was SiO32− > SO42− > PO43− > NO3− > HCO3−.The facilitation followed the order of Cd2+>Cu2+>Mg2+>Mn2+>Ca2+. Ca2+ showed an inhibitory effect, but all other cations showed different degrees of facilitation. The promotion effect is relatively similar in presence of Mn2+ or Mg2+. HA had a significant inhibitory effect. Environmental friendly p-nZVI had a good effect in simulated groundwater, seawater, river water and secondary effluent of the urban sewage treatment plant. The main pathway to remove Cr (VI) was in situ reduction by p-nZVI. The improved adsorption and reduction effect of p-nZVI on heavy metal ions in water was due to the structural change and the phosphate group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.