Abstract
Nitroxyl (HNO) demonstrates a unique chemical and biological profile compared to nitric oxide (NO). Phosphorus NMR studies reveal that HNO reacts with triarylphosphines to give the corresponding phosphine oxide and aza-ylide. In the presence of a properly situated electrophilic ester, the aza-ylide undergoes a Staudinger ligation to yield an amide with the nitrogen atom being derived from HNO. These results define new HNO reactivity and provide the basis of new HNO detection methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.