Abstract

Reductive coupling of nitric oxide (NO) to give N2 O is an important reaction in the global nitrogen cycle. Here, a dinickel(II) dihydride complex 1 that releases H2 upon substrate binding and serves as a masked dinickel(I) scaffold is shown to reductively couple two molecules of NO within the bimetallic cleft. The resulting hyponitrite complex 2 features an unprecedented cis-[N2 O2 ]2- binding mode that has been computationally proposed as a key intermediate in flavodiiron nitric oxide reductases (FNORs). NMR and DFT evidence indicate facile rotational fluxionality of the [N2 O2 ]2- unit, which allows to access an isomer that is prone to N2 O release. Protonation of 2 is now found to trigger rapid N2 O evolution and formation of a hydroxido bridged complex, reminiscent of FNOR reactivity. This work provides fundamental insight into the biologically relevant reductive coupling of two NO molecules and the subsequent trajectory towards N2 O formation at bimetallic sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.