Abstract

It has been proposed that covalent binding of reactive metabolites to liver membrane constituents may be responsible for the hepatoxicity of carbon tetrachloride. This study demonstrates that trichloromethyl free radical is the major reductive metabolite of carbon tetrachloride by cytochrome P-450 and that this free radical is capable of binding to double bonds of fatty acyl chains of the phospholipids in the membrane surrounding cytochrome P-450. The structural identification of the reactive free radical metabolite and the product of its addition to phospholipids was accomplished by use of a reconstituted system of human cytochromes P-450, NADPH-cytochrome P-450 reductase, and cytochrome b5 in phospholipid vesicles. The reconstituted vesicles contained a mixture of dioleoyl phosphatidylcholine and egg phosphatidylethanolamine that served as both structural components and targets for trichloromethyl free radical binding. After incubation of these vesicles under a N2 atmosphere in the presence of NADPH with 14CCl4, the phospholipids were extracted and then separated by high-pressure liquid chromatography. The dioleoyl phosphatidylcholine fraction was transesterified and the resulting single 14C-labeled fatty acid methyl ester was purified by reverse-phase chromatography. Desorption chemical ionization mass spectrometry with ammonia as reagent gas as well as desorption electron-impact mass spectrometry permitted identification of the molecular structure as a mixture of 9- and 10-(trichloromethyl)stearate methyl esters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call