Abstract

The United States and the European Union each generate around 6900 million dry tons of sewage sludge annually. This is disposed of by land application, landfilling, incineration and other approaches. Reductive hydrothermal (HT) treatment refers here to simple aqueous systems heated and pressurized above 300 degrees C/100 bar under anoxic and/or reducing conditions. The purpose of this study was to examine the HT treatment of municipal sewage sludge and infectious fecal microbial cultures with respect to waste volume reduction, biological sterilization, and the generation of usable hydrocarbon product mixtures. These endpoints from HT treatment also were compared to those from pyrolysis. HT at 400 degrees C/150 bar transformed sewage sludge solids into complex gas phase (4%) and liquid (6%) hydrocarbon mixtures (approximately 11% combined yield), along with similar amounts (5%) of solid residues. HT products in the aqueous phase (e.g., alcohols) were present but not analysed. Viable mixed fecal cultures (10(9) colony forming units/mL) were completely sterilized by HT treatment, and a hydrocarbon mixture also was generated from the cells, but it was markedly different from that resulting from HT of the sludge. The hydrocarbon assemblage generated from the sludge included n-hydrocarbons (C9-C20) and alkyl substituted benzenes, phenols, and related compound series of higher mass (e.g., indanes, naphthalenes). Light aromatic parent compounds were significantly less abundant than their substituted C1-C5 alkyl series and there was a paucity of N-, O- and S-heterocycles and polycyclic systems with more than three fused rings. This was different from the products of pyrolysis which were dominated by a relatively simple mixture of linear and branched hydrocarbons and their oxidized homologues (e.g., aldehydes).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call