Abstract
Pig kidney medium-chain acyl-CoA dehydrogenase is specifically alkylated at a methionine residue by treatment with iodoacetate at pH 6.6. This residue corresponds to Met249 in the human medium-chain acyl-CoA dehydrogenase sequence [Kelly, D. P., Kim, J. J., Billadello, J. J., Hainline, B. E., Chu, T. W., & Strauss, A. W. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4068-4072]. The S-carboxymethylated dehydrogenase shows a drastically lowered affinity for octanoyl-CoA (from submicromolar to 65 microM), but retains about 23% of the maximal activity of the native enzyme. In addition, alkylation perturbs the internal redox equilibrium: E.FADox.octanoyl-CoA K2 in equilibrium with E.FAD2e.octenoyl-CoA K2 ranges from about 9 for the native enzyme to about 0.2 for the homogeneously modified protein. This effect is not due to a significant change in the redox potential of the free enzyme upon alkylation. Rather, carboxymethylation weakens the preferential binding of enoyl-CoA product to the reduced enzyme (K3) compared to octanoyl-CoA binding to the oxidized dehydrogenase (K1) that is required to pull the substrate thermodynamically uphill. Thus, the ratio of dissociation constants, K1/K3, decreases from about 15,000 for the native enzyme to only 330 upon carboxymethylation of Met249. Binding studies with a variety of acyl-CoA analogues and manipulation of enzyme redox potentials by substitution of the natural prosthetic group by 8-Cl-FAD confirm the thermodynamic effects of alkylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.