Abstract

The reduction of rhodium(III) porphyrins in polar aprotic solvents is a two-electron irreversible reaction yielding directly the Rh(I) complex. The cause of this irreversibility is not the metal−metal dimerization of the initially formed Rh(II) complex as believed earlier but rather deligation which generates a secondary Rh(II) species easier to reduce than the starting Rh(III) porphyrin. This is confirmed by the fact that sterically encumbered porphyrins, such as those bearing cross-trans basket-handle superstructures which forbid the approach of two molecules at bonding distance, exhibit the same behavior as simple rhodium porphyrins. The occurrence of such an ECE−disproportionation process, seldom observed in the redox chemistry of metallo-porphyrins or similar complexes, is probably related to the tendency of the rhodium atom to shift out of the porphyrin plane, particularly at the Rh(I) oxidation state. It is remarkable that strong and soft ligands, e.g., tertiary phosphines, annihilate the dispropor...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.