Abstract

Ferrihydrites were prepared by coprecipitation (COP) or adsorption (ADS) of arsenate, and the products were characterized using solid-state methods. In addition, the kinetics of reductive dissolution by hydroquinone of these well-characterized materials were quantified. Characterization and magnetism results indicate that the 10 wt% As COP ferrihydrite is less crystalline and possibly has smaller crystallite size than the other ferrihydrites, which all have similar crystallinity and particle size. The results from reductive dissolution experiments show similar reaction rates, reaction mechanism, and activation energy for ferrihydrite precipitated with or without added arsenate. However, a marked decrease in reactivity was observed for 10 wt% As ADS ferrihydrite. The decrease is not attributed to differences in activation energy but rather the preferential blocking of active sites on the ferrihydrite surface. Results demonstrate that arsenic may be released by the reductive dissolution of arsenic-bearing ferrihydrite regardless of whether the arsenic is coprecipitated with or adsorbed onto the ferrihydrite. However, under these reaction conditions, release from materials with adsorbed arsenate greatly exceeds that from materials with coprecipitated arsenate. In fact, a considerable amount of arsenic was released from the 10 wt% ADS ferrihydrite before reductive dissolution was initiated. Therefore, the characterization of arsenate-bearing iron oxide materials to determine the method of arsenate incorporation into structures—perhaps by quantification of Fe–Fe coordination with EXAFS spectroscopy—may lead to improved predictions of the large-scale release of arsenic within aquifer systems under reducing conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.