Abstract

Perfluorooctanoic acid (PFOA) is widespread in the environment, which causes serious health and safety concerns. A mechanistic study on reductive defluorination of PFOA by titanium(III) citrate in the presence of catalysts was conducted. Vitamin B12 was used to catalyze reduction reactions by shuttling electrons from a reducing agent (electron donor) to PFOA to produce a Co-carbon bond intermediates. In the presence of copper nanoparticles, a precursor complex, B12-C7F14COOH, adsorbed on the metal surface, followed by a hydrogenolytic reaction to form less-fluorinated products. The synergistic effect between vitamin B12 and copper nanoparticles enhances the reductive activities by electron-transfer reactions and hydrogenolysis. The efficient reduction of PFOA to less-noxious compounds was demonstrated with a copper dose of 2gL−1, titanium(III) citrate (45mM), and vitamin B12 (0.2mM) with an initial pH of 9.0 and 70°C. In this anoxic aqueous solution, the biomimetic reductive system effectively removed 65% of PFOA. The mass balance on fluoride matched the observed degradation of PFOA, while no short-chain intermediates were detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.