Abstract
The enrichment culture SL2 dechlorinating tetrachloroethene (PCE) to ethene with strong trichloroethene (TCE) accumulation prior to cis-1,2-dichloroethene (cis-DCE) formation was analyzed for the presence of organohalide respiring bacteria and reductive dehalogenase genes (rdhA). Sulfurospirillum-affiliated bacteria were identified to be involved in PCE dechlorination to cis-DCE whereas "Dehalococcoides"-affiliated bacteria mainly dechlorinated cis-DCE to ethene. Two rdhA genes highly similar to tetrachloroethene reductive dehalogenase genes (pceA) of S. multivorans and S. halorespirans were present as well as an rdhA gene very similar to the trichloroethene reductive dehalogenase gene (tceA) of "Dehalococcoides ethenogenes" strain 195. A single strand conformation polymorphism (SSCP) method was developed allowing the simultaneous detection of the three rdhA genes and the estimation of their abundance. SSCP analysis of different SL2 cultures showed that one pceA gene was expressed during PCE dechlorination whereas the second was expressed during TCE dechlorination. The tceA gene was involved in cis-DCE dechlorination to ethene. Analysis of the internal transcribed spacer region between the 16S and 23S rRNA genes revealed two distinct sequences originating from Sulfurospirillum suggesting that two Sulfurospirillum populations were present in SL2. Whether each Sulfurospirillum population was catalyzing a different dechlorination step could however not be elucidated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.