Abstract

We present here a catalytic method based on a low-valent Bi complex capable of cyclopropanation of double bonds under blue LED irradiation. The catalysis features various unusual Bi-based organometallic steps, namely, (1) two-electron inner sphere oxidative addition of Bi(I) complex to CH2I2, (2) light-induced homolysis of the Bi(III)-CH2I bond, (3) subsequent iodine abstraction-ring-closing, and (4) reduction of Bi(III) to Bi(I) with an external reducing agent to close the cycle. Stoichiometric organometallic experiments support the proposed mechanism. This protocol represents a unique example of a reductive photocatalytic process based on low-valent bismuth radical catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.