Abstract
We define and investigate a class of compact homogeneous CR manifolds, that we call $$ \mathfrak{n} $$ -reductive. They are orbits of minimal dimension of a compact Lie group K 0 in algebraic affine homogeneous spaces of its complexification K. For these manifolds we obtain canonical equivariant fibrations onto complex flag manifolds, generalizing the Hopf fibration $$ {S^3}\to \mathbb{C}{{\mathbb{P}}^1} $$ . These fibrations are not, in general, CR submersions, but satisfy the weaker condition of being CR-deployments; to obtain CR submersions we need to strengthen their CR structure by lifting the complex stucture of the base.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.