Abstract

Colloidal quantum dots (QDs) consisting of precious-metal-free elements show attractive potentials towards solar-driven CO2 reduction. However, the inhibition of hydrogen (H2 ) production in aqueous solution remains a challenge. Here, we describe the first example of a carbon-carbon (C-C) coupling reaction to block the competing H2 evolution in photocatalytic CO2 reduction in water. In a specific system taking ZnSe QDs as photocatalysts, the introduction of furfural can significantly suppress H2 evolution leading to CO evolution with a rate of ≈5.3 mmol g-1 h-1 and a turnover number (TON) of >7500 under 24 h visible light. Meanwhile, furfural is upgraded to the self-coupling product with a yield of 99.8 % based on the consumption of furfural. Mechanistic insights show that the reductive furfural coupling reaction occurs on surface Zn-sites to consume electrons and protons originally used for H2 production, while the CO formation pathway at surface anion vacancies from CO2 remains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call