Abstract

Abstract1,3,2‐diazaphospholene hydrides (DAP−H) enable smooth conjugate reduction of polarized double bonds. The transiently formed phosphorus‐enolate provides a potential platform for reductive α‐functionalizations. In this respect, asymmetric C‐heteroatom bond forming processes are synthetically appealing but remain elusive. We report a 1,3,2‐diazaphospholene‐catalyzed three‐step cascade reaction of N‐sulfinyl acrylamides comprised of conjugate reduction, [2,3]‐sigmatropic aza‐Mislow‐Evans rearrangement and subsequent S−O bond cleavage. The obtained enantio‐enriched α‐hydroxy amides are formed in good yields and excellent enantiospecificity. The stereo‐defined P‐bound N,O‐ketene aminal ensures an excellent transfer of chirality from the sulfur stereocenter to α‐carbon. The transformation operates under mild conditions at ambient temperature. Moreover, DAP−H is a competent reductant for the cleavage of formed sulfenate ester, eliminating the extra step in traditional Mislow‐Evans processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.