Abstract

The high toxicity, poor stability, premature drug release, and lack of intracellular stimuli responsibility of current polymeric micelles still hinder them for potential clinical applications. To address these challenges, a novel type of multi-stimuli responsive, core cross-linked polypeptide hybrid micelles (CCMs) was developed for triggered anticancer drug delivery in tumor microenvironment. The CCMs was prepared via free radical copolymerization by using N,N'-methylene-bis-acylamide (BACy) as the cross-linking agent, 2,2-azobisisobutyronitrile (AIBN) as the initiator, where poly (γ-benzyl-L-glutamate) (PBLG) and N-isopropylacrylamide (NIPPAM) as comonomers. The doxorubicin (DOX) was then introduced into the CCMs by hydrazone bond to prepare the drug-incorporated core cross-linked micelles (CCMs-DOX). By the experimental results, the CCMs showed reduction responsibility due to the degradable disulfide bond in the polymer network. The hydrazone bond can be broken under acidic condition causing a controllable drug release for CCMs-DOX. Compared to only 7.7% DOX release under pH 7.4 at 37°C, a much higher DOX release rate up to 85.3% was observed under 10 mM GSH (pH 5.0, 42°C). In vitro cell assays showed that the blank CCMs showed almost no toxicity against HUVEC cells while the CCMS-DOX exhibited significant cancer cell killing effect. These experimental results suggested that the prepared multi-stimuli responsive polymeric micelles could serve as a smart and promising drug delivery candidate for anti-cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call