Abstract
AbstractLet $A$ be the product of an abelian variety and a torus defined over a number field $K$. Fix some prime number $\ell$. If $\unicode[STIX]{x1D6FC}\in A(K)$ is a point of infinite order, we consider the set of primes $\mathfrak{p}$ of $K$ such that the reduction $(\unicode[STIX]{x1D6FC}\hspace{0.2em}{\rm mod}\hspace{0.2em}\mathfrak{p})$ is well-defined and has order coprime to $\ell$. This set admits a natural density. By refining the method of Jones and Rouse [Galois theory of iterated endomorphisms, Proc. Lond. Math. Soc. (3)100(3) (2010), 763–794. Appendix A by Jeffrey D. Achter], we can express the density as an $\ell$-adic integral without requiring any assumption. We also prove that the density is always a rational number whose denominator (up to powers of $\ell$) is uniformly bounded in a very strong sense. For elliptic curves, we describe a strategy for computing the density which covers every possible case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Institute of Mathematics of Jussieu
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.