Abstract

The reaction of the vanadium(III) tris(silylamide) V{N(SiMe3)2}3 with LiAlH4 in diethyl ether gives the highly unstable mixed-metal polyhydride [V(μ2-H)6[Al{N(SiMe3)2}2]3][Li(OEt2)3] (1), which was structurally characterized. Alternatively, performing the same reaction in the presence of 12-crown-4 affords a rare example of a structurally verified vanadium terminal hydride complex, [VH{N(SiMe3)2}3][Li(12-crown-4)2] (2). The corresponding deuteride 2D was also prepared using LiAlD4. In contrast, no hydride complexes were isolated by reaction of M{N(SiMe3)2}3 (M = Cr, Fe) with LiAlH4 and 12-crown-4. Instead, these reactions afforded the anionic metal(II) complexes [M{N(SiMe3)2}3][Li(12-crown-4)2] (3, M = Cr; 4, M = Fe). The reaction of the iron(III) tris(silylamide) Fe{N(SiMe3)2}3 with lithium aluminum hydride without a crown ether gives the "hydrido inverse crown" complex [Fe(μ2-H){N(SiMe3)2}2(μ2-Li)]2 (5), while treatment of the same trisamide with alane trimethylamine complex gives the iron(II) polyhydride complex Fe(μ2-H)6[Al{N(SiMe3)2}2]2[Al{N(SiMe3)2}(NMe3)] (6). Complexes 2-6 were characterized by X-ray crystallography, as well as by infrared, electronic, and 1H and 13C (complex 6) NMR spectroscopies. Complexes 1 and 6 are apparently formed by an unusual "metallo-transamination" process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.