Abstract

In this study, we analyzed the spatiotemporal alterations of phospholipid composition in the spinal cord of an amyotrophic lateral sclerosis (ALS) mouse model (G93A-mutated human superoxide dismutase 1 transgenic mice [SOD1G93A mice]) using imaging mass spectrometry (IMS), a powerful method to visualize spatial distributions of various types of molecules in situ. Using this technique, we deciphered the phospholipid distribution in the pre-symptomatic stage, early stage after disease onset, and terminal stages of disease in female SOD1G93A mouse spinal cords. These experiments revealed a significant decrease in levels of docosahexaenoic acid (DHA)-containing phosphatidylcholines (PCs), such as PC (diacyl-16:0/22:6), PC (diacyl-18:0/22:6), and PC (diacyl-18:1/22:6) in the L5 anterior horns of terminal stage (22-week-old) SOD1G93A mice. The reduction in PC (diacyl-16:0/22:6) level could be reflecting the loss of motor neurons themselves in the anterior horn of the spinal cord in ALS model mice. In contrast, other PCs, such as PC (diacyl-16:0/16:0), were observed specifically in the L5 dorsal horn gray matter, and their levels did not vary between ALS model mice and controls. Thus, our study showed a significant decrease in DHA-containing PCs, but not other PCs, in the terminal stage of ALS in model mice, which is likely to be a reflection of neuronal loss in the anterior horns of the spinal cords. Given its enrichment in dorsal sensory regions, the preservation of PC (diacyl-16:0/16:0) may be the result of spinal sensory neurons being unaffected in ALS. Taken together, these findings suggest that ALS spinal cords show significant alterations in PC metabolism only at the terminal stage of the disease, and that these changes are confined to specific anatomical regions and cell types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.