Abstract

To investigate the significance of fibre type and the duration of ischemia on changes in sarcoplasmic reticulum Ca2+ ATPase activity (SR Ca2+ ATPase), blood flow was occluded to the rat hind limb for 1, 2, or 3 h (n = 10 per group) and the soleus and extensor digitorum longus (EDL) muscles were examined following 2 h of reperfusion. When compared with the contralateral control muscles, calcium-dependent (total tau basal) SR Ca2+ ATPase activity in soleus was reduced (p < 0.05) to 75.9% by 1 h of ischemia and 2 h of reperfusion (13.1 +/- 0.6 vs. 9.95 +/- 0.85 mumol.mg-1 wet weight.min-1; X +/- SE) with no further reduction (p > 0.05) observed at either 2 h (9.75 +/- 0.57) or 3 h (9.40 +/- 0.64) of ischemia and 2 h of reperfusion. For the EDL muscles, SR Ca2+ ATPase activity with 2 h reperfusion was not reduced (p > 0.05) with 1 h of ischemia (80.4 +/- 3.0 vs. 70.7 +/- 2.9 mumol.mg-1 wet weight.min-1) but was reduced (66.7 +/- 2.3 mumol.mg-1 wet weight.min-1; p < 0.05) in the 2-h ischemia group, with further reductions (53.2 +/- 3.4 mumol.mg-1 wet weight.min-1; p < 0.05) in the 3-h ischemia group. No changes (p > 0.05) in basal or SR Mg2+ ATPase were found for either muscle group with ischemia and reperfusion, regardless of the duration of ischemia. When these results are interpreted in the context of the increases in SR Ca2+ ATPase activity that occur with ischemia, it appears that two components are involved in the reductions in SR Ca2+ ATPase activity noted during reperfusion: one that reduces the SR Ca2+ ATPase activity to below normal and one that simply reverses the ischemic-induced increase in SR Ca2+ ATPase activity. The former component appears to be more pronounced in the EDL muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.