Abstract
In this work we show how some useful reductions known from ordinary intuitionistic propositional calculus can be modified for Intuitionistic Linear Logic (without modalities). The main reductions we consider are: (1) the reduction of the depth of formulas in the sequents by addition of new variables, and (2) the elimination of linear disjunction, tensor and constant F. Both transformations preserve deducibility, that is, a transformed sequent is deducible if and only if the initial one was deducible. The size of the sequent grows linearly in case (1) and ≤ On8 in case (2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.