Abstract
Muscle fatigue has been known to differentially affect the activation level of the primary motor cortices (MIs) of the brain's two hemispheres. Whether this fatigue-related decoupling influence on the motor cortical signals extends beyond the motor action to the after-fatigue-task resting state is unknown. This question can be addressed by analyzing functional connectivity (FC) of low-frequency oscillations of resting-state functional MRI (fMRI) signals of the MIs. Low-frequency oscillations (<0.08 Hz) have been detected in many fMRI studies and appear to be synchronized between functionally related areas. These patterns of FC have been shown to differ between normal and various pathological states. The purpose of this study was to examine muscle fatigue-induced resting-state interhemispheric motor cortex FC changes in healthy subjects. We hypothesized that muscle fatigue would create a temporary “disrupted state” in the brain, and would decrease resting state interhemispheric motor cortical FC. Ten healthy subjects performed repetitive unilateral handgrip contractions that induced significant muscle fatigue, with resting state fMRI data collected before and after the task. After excluding two subjects due to gross head motion, interhemispheric motor cortex FC was assessed by cross-correlating the MI fMRI signal time courses. We found that the number of significant interhemispheric correlations in the MI fMRI signals decreased significantly after the performance of the fatigue task. These results suggest that resting state interhemispheric motor cortex FC may be used as an index of recovery from fatigue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.