Abstract

In [19] we derive nonlocal symmetries for ordinary differential equations by embedding the given equation in an auxiliary system. Since the nonlocal symmetries of the ODE's are local symmetries of the associated auxiliary system this result provides an algorithmic method to derive this kind of nonlocal symmetries. In this work we show some classes of ordinary differential equations which do not admit any Lie symmetry unless some conditions are satisfied but for which we have derived nonlocal symmetries. These nonlocal symmetries allow us to reduce the order for these equations even if these equations do not admit point symmetries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.