Abstract

SummaryIncreased consumption of produce by consumers has been attributed to perceived health benefits of postharvest produce. Pathogen control is crucial because periodic occurrences and contamination of tomato and leafy greens have exacerbated food safety risks for consumers. We investigated the effects of temperatures (5 and 25 °C), storage time (30 min and 24 h) for inactivation of Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7 by sophorolipid (SL‐p) produced fermentatively using palmitic acid as a co‐substrate at different concentrations in vitro. Reduction in pathogenic bacteria on grape tomato by SL‐p, sanitiser (Lovit) and combinations of SL‐p and sanitiser was determined. Temperature and storage time significantly (P < 0.05) affected pathogen inactivations by SL‐p as pathogen reductions were greater at 25 °C and 24 h than at 5 °C and 30 min of storage. L. monocytogenes was the most sensitive to SL‐p treatment as reductions of 5 log relative to untreated controls were attained at 0.12% of SL‐p. Significant reductions in S. enterica (1.91–3.85 logs) and E. coli O157:H7 (0.87–4.09 logs) were recorded at 2–5% of SL‐p. Lower populations of Salmonella and E. coli O157:H7 were inactivated than L. monocytogenes. On grape tomato, pathogen populations inactivated increased at higher SL‐p levels at 25 °C. Sanitiser and sanitiser + SL‐p reduced bacterial populations on tomato by 5.29–5.76 logs and 0.71–3.3.66 logs, respectively. These results imply the interactions of temperature, storage time and SL‐p significantly (P < 0.05) affected pathogen strain reductions. The combination of SL‐p with sanitiser led to synergistic effect on E. coli O157:H7, but not L. monocytogenes and S. enterica.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call