Abstract

Ternary Ni-W-C cemented carbides were synthesized directly from mixture powder of NiO-WO3 by simultaneous reduction-carburization in mixed H2-CH4 gas environment in a thin bed reactor in the temperature range 973-1273K. The kinetics of the reaction was closely followed by monitoring the mass change using thermogravimetric method (TGA). The nascent particles of the metals formed by reduction could react with the gas mixture with well-defined carbon potential to form a uniform product of Ni-W-C. The gas mixture ratio was adjusted in such a way that the Ni-W-C formed was close to the two phase tie line. In view of the fact that each particle was in direct contact with the gas mixture, the reaction rate could be conceived as being controlled by the combined reduction-carburization reaction. From the reaction rate, the Arrhenius activation energies were evaluated. Characterization of the carbides produced was carried out by using X-ray diffraction, SEM-EDS as well as high resolution electron microscope (HREM). The grain sizes were also determined. Correlations were found between the carbide composition as well as grain size and the process parameters such as temperature of the reduction-carburization reaction as well as the composition of the gas mixture. The results are discussed in the light of the kinetics of the reduction of oxides and the thermodynamic constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.