Abstract

This study evaluated the use of a sustainable GFD binder for the stabilization/solidification (S/S) of chromium VI (Cr(VI))-contaminated soil. The GFD binder was composed of ground granulated blast furnace slag (GGBFS), fly ash and desulfurization ash, named after the initials of the three materials. The effects of curing time and binder dosage on soil unconfined compressive strength (UCS), Cr leachability, soil pH, and reduction ratio of Cr (VI) were tested. The immobilization mechanisms of Cr(VI) in contaminated soil were further explored using X-ray diffraction (XRD), scanning electron microscopy (SEM), and sequential extraction procedure (SEP). The results showed that the UCS and pH of the soil increased substantially after the GFD binder was added. After 28 days of curing with a 20% binder dosage, the leached total Cr concentration decreased from 34.4 mg/L in the contaminated soil to 1.44 mg/L in the treated soil, and the leached Cr(VI) concentration decreased from 28.0 mg/L to 0.45 mg/L. A Cr(VI) reduction ratio of 96.2% was achieved, indicating the strong reducibility of GGBFS. XRD revealed that the main hydration products of the GFD binder were hydrated calcium silicate (C–S–H) and ettringite. SEM results showed that the formation of hydration products and Cr-bearing precipitates filled the soil pores, resulting in a dense soil structure. The SEP results demonstrated that the levels of the unstable fraction F1 decreased considerably, and that the levels of the stable fractions F3 and F5 increased after treatment. Encapsulation by C–S–H, reduction by sulfides, adsorption of C–S–H, and precipitation of Cr-bearing hydroxides were the main mechanisms involved in Cr immobilization using the GFD binder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call