Abstract

Delivery systems that can encapsulate a precise amount of drug and offer a spatiotemporally controlled drug release are being actively sought for safe yet effective cancer therapy. Compared to polymer nanoparticle (NP)-based delivery systems that rely on physical drug encapsulation, NPs derived from stimuli-sensitive covalent polymer-drug conjugates (PDCs) have emerged as promising alternatives offering precise control over drug dosage and spatiotemporal drug release. Herein, we report a reduction-sensitive PDC "Dex-SS-PTXL" synthesized by conjugating dextran and paclitaxel (PTXL) through a disulfide bond-bearing linker. The synthesized Dex-SS-PTXL PDC with a precise degree of substitution in terms of the percentage of repeat units of dextran covalently conjugated to PTXL (27 ± 0.6%) and the amount of drug carried by the PDC (39 ± 1.4 wt %) was found to self-assemble into spherical NPs with an average size of 110 ± 34 nm and a ζ-potential of -14.09 ± 8 mV. The reduction-sensitive Dex-SS-PTXL NPs were found to release PTXL exclusively in response to the reducing agent concentration reflective of the intracellular reducing environment of the tumor cells. Challenging BT-549 and MCF-7 cells with Dex-SS-PTXL NPs revealed significant cytotoxicity, while the IC50 values and the mode of action (mitotic arrest) of Dex-SS-PTXL NPs were found to be comparable to those of free PTXL, highlighting the active nature of the intracellularly released drug. The developed PDC with its unique ability to self-assemble into NPs and stimuli-responsive drug release can enhance the success of the NP-based drug delivery systems during clinical translation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.