Abstract

Electron paramagnetic resonance (EPR) spectroscopy, coupled with site-directed spin labeling (SDSL), is a useful method for studying conformational changes of biomolecules in cells. To employ in-cell EPR using nitroxide-based spin labels, the structure of the nitroxides must confer reduction resistance to withstand the reductive environment within cells. Here, we report the synthesis of two new spin labels, EÇ and EÇm, both of which possess the rigidity and the reduction resistance needed for extracting detailed structural information by EPR spectroscopy. EÇ and EÇm were incorporated into DNA and RNA, respectively, by oligonucleotide synthesis. Both labels were shown to be nonperturbing of the duplex structure. The partial reduction of EÇm during RNA synthesis was circumvented by the protection of the nitroxide as a benzoylated hydroxylamine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.