Abstract

With a view to produce Fe-Al alloys for deoxidation during steel refining, chemical reactions were investigated in Al2O3-C-Fe and Al2O3-Fe2O3-C systems at 1 823 K. Using a horizontal tube furnace and argon atmosphere, interactions were investigated for time periods up to 2 hours. Two sets of blends were prepared from initial constituents, which were later used to prepare two types of substrates. Alumina and synthetic graphite powders were blended in a 70: 30 proportion (blend l), and in the second set, Fe2O3 was blended with C in a proportion of 75:25 (blend II). In one case, blend I was mixed thoroughly with iron powder (Fe (2.7 pct C)) in a ratio of 80:20; in the second case, blend I was mixed with blend II in the ratio of 70:30. We report significant reduction reactions in both cases. SEM/EDS studies on the Al2O3-C-Fe system showed unambiguous evidence for the pick-up of aluminium by molten iron after 1 hour. Levels of aluminium in molten iron were found to increase significantly with time. Due to in-situ reduction of Fe2O3, the generation of CO gas and associated turbulence, the reactions were quite fast in the Al2O3Fe2O3-C system. X-ray diffraction studies showed the presence of additional diffraction peaks belonging to Fe(3)AIC and Fe(3)AI systems. Molten iron was found to act as a reducing agent and a metallic solvent in both cases. This study provides evidence for the carbothermic reduction of alumina at 1 823 K and for the formation of ferroalloys directly from mixed oxides of aluminium and iron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.