Abstract

Large amounts of microplastics (MPs) that have accumulated in excess sludge may increase the environmental risk for its subsequent treatment. This study aimed to investigate the performance and mechanism of the reduction of MPs in excess sludge in a vermi-wetland. For this, 1 μm, 100 μm, and 500 μm of fluorescent MPs stained with Nile red were added to raw sludge, and their decreased numbers were quantified during the treatment of sludge. The results showed that the removal rates of chemical oxygen demand and total solids from the excess sludge were 63.44%–90.98% and 37.61%–51.56% in the vermi-wetland, respectively. The numbers of 1 μm, 100 μm, and 500 μm MPs could be reduced by 86.62%–95.69%, 95.44%–99.52%, and 100% in the vermi-wetland, respectively. These results indicate that the vermi-wetland is more effective at eliminating MPs. Further insight into the vermi-wetland stratification was obtained, and more than 74.87% of the MPs were intercepted in the vermicompost layer. Moreover, all the particle sizes of MPs were found in the excrement of earthworms. However, only 1 μm MPs were detected in their digestive organs. This study suggests that the interception effect is primarily responsible for elimination of MPs in excess sludge, and the bioturbation of earthworms plays an important role in the mobilization of MPs in vermi-wetlands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call