Abstract

This paper investigated the post-fault operation of a novel six-phase double-stator axial flux permanent magnet machine with detached winding configuration, which was found to be superior to existing winding configuration in previous study. However, the unbalanced magnetic force problem still remains unsolved. In this paper, the axial force balancing control principle is proposed and a group of specific current waveforms are deduced. When applying these currents under post-fault condition, magnetic torque, axial magnetic force and rotor losses of the machine are calculated in finite element analysis. The results are compared with normal condition and commonly-used post-fault current waveforms. It is verified that this method reduced the unbalanced axial magnetic force immensely and the torque ripple was also kept at a low level. In order to achieve the proposed current waveform, finite control set model predictive control (FCS-MPC) is adopted. This paper proposed the post-fault model of dual three-phase permanent magnet machines and designed a cost function to track the desired current waveforms. The model of the machine is used to predict the future behavior of the controlled variables and the cost function decides the next step of the inverter by evaluating all the predictions. At last, it is verified by simulation results that the control strategy performs well in both dynamic and steady-state situations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call