Abstract
ABSTRACTSupport Vector Machine (SVM) is an efficient machine learning technique applicable to various classification problems due to its robustness. However, its time complexity grows dramatically as the number of training data increases, which makes SVM impractical for large-scale datasets. In this paper, a novel Parallel Hyperplane (PH) scheme is introduced which efficiently omits redundant training data with SVM. In the proposed scheme the PHs are recursively formed while the clusters of data points outside the PHs are removed at each repetition. Computer simulation reveals that the proposed scheme greatly reduces the training time compared to the existing clustering-based reduction scheme and SMO scheme, while allowing the accuracy of classification as high as no data reduction scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.