Abstract

Synchronous Reluctance (SyR) machines are a viable alternative to other kinds of electrical machines in many fields. The simple rotor structure allows a high efficiency level with low manufacturing costs and higher safety in high-speed operations. However, one of the main problems of the SyR machines is the torque ripple generated by the interaction of the stator and rotor Magneto-Motive Force harmonics. Many design solutions have been proposed to date, but heavy torque ripple reduction has only been achieved with long optimizations runs or with complex machine structures. This paper presents an easy and effective method to reduce torque ripple through flux barrier shift. Two machines were designed in order to compare the proposed design with a state-of-the-art procedure. The machines designed with flux barrier shift presents similar performances to the optimized machine, with a lower design time and a more general design method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.