Abstract

Mechanical vibration and acoustic noise are major obstacles in the development of high-density and high-spindle-speed hard disk drives. Torque ripple caused by the electrical driver is the main source of vibration and noise. This paper proposes a novel driver for spindle motors in hard disk drives based on the principle of position sensorless vector control. To reduce torque ripple, the proposed driver feeds the spindle motor in sinusoidal driving mode by which the sinusoidal current of the motor can be obtained. Experimental results of the proposed driver demonstrate the better driving performance in startup condition and fine sinusoidal current in steady state. Vibration testing shows significant improvement in the attenuation of vibration: the dominant vibration modes can be reduced to one tenth compared to that of a conventional driver. In addition, the mechanism of inducing torque ripple from time-harmonic currents is analyzed and the relationship between induced torque ripple and exhibited vibration modes is examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.