Abstract
Thrombolytic stroke therapy with tissue plasminogen activator (tPA) remains complicated by serious risks of cerebral hemorrhage and brain injury. In this study, a novel model of tPA-induced hemorrhage was used in spontaneously hypertensive rats to examine the correlates of hemorrhage, and test methods of reducing hemorrhage and brain injury. Homologous blood clot emboli were used to occlude the middle cerebral artery in spontaneously hypertensive rats, and delayed administration of tPA (6 hours postischemia) resulted in high rates of cerebral hemorrhage 24 hours later. Compared with untreated rats, tPA significantly increased hemorrhage volumes by almost 85%. Concomitantly, infarction and neurological deficits were worsened by tPA. A parallel experiment in normotensive Wistar-Kyoto rats showed markedly reduced rates of hemorrhage, and tPA did not significantly increase hemorrhage volumes. To examine whether tPA-induced hemorrhage was caused by the delayed onset of reperfusion per se, another group of spontaneously hypertensive rats was subjected to focal ischemia using a mechanical method of arterial occlusion. Delayed (6 hours) reperfusion via mechanical means did not induce hemorrhage. However, administration of tPA plus delayed mechanical reperfusion significantly increased hemorrhage volumes. Since reperfusion injury was implicated, a final experiment compared outcomes in spontaneously hypertensive rats treated with tPA plus the free radical spin trap alpha-phenyl tert butyl nitrone (alpha-PBN) versus tPA alone. tPA-induced hemorrhage volumes were reduced by 40% with alpha-PBN, and infarction and neurological deficits were also decreased. These results indicate that (1) blood pressure is an important correlate of tPA-induced hemorrhage, (2) tPA interacts negatively with reperfusion injury to promote hemorrhage, and (3) combination therapies with anti-free radical treatments may reduce the severity of tPA-induced hemorrhage and brain injury after cerebral ischemia.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.