Abstract

This paper focuses on the reduction of thermal residual stress in carbon fiber aluminum laminates (CARALL) which is fabricated by carbon fiber reinforced plastic layers combined with aluminum alloy layers. A new method is proposed to reduce the thermal residual stress using a thermal expansion clamp during curing process. Tensile tests are performed to determine the thermal residual stress based on yielding point shift method. Experimental results show that the thermal residual stress can be reduced by 39% without reduction of tensile strength of CARALL. A comparison of experimental results obtained from CARALLs fabricated by present method with those obtained from CARALLs fabricated by smart cure cycle method is carried out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call