Abstract

To examine any potential role for 1,25-dihydroxyvitamin D (1,25(OH)2D) in inflammation associated with chronic kidney disease we measured vitamin D metabolites, markers of inflammation and gene expression in 174 patients with a variety of kidney diseases. Urinary MCP-1 protein and renal macrophage infiltration were each significantly but inversely correlated with serum 1,25(OH)2D levels. Logistic regression analysis with urinary MCP-1 as binary outcome showed that a 10-unit increase in serum 1,25(OH)2D or 25OHD resulted in lower renal inflammation. Analysis of 111 renal biopsies found that renal injury was not associated with a compensatory increase in mRNA for the vitamin D-activating enzyme 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1), its catabolic counterpart 24-hydroxylase, or the vitamin D receptor. There was, however, a significant association between tissue MCP-1 and CYP27B1. Patients with acute renal inflammation had a significant increase in urinary and tissue MCP-1, macrophage infiltration, and macrophage and renal epithelial CYP27B1 expression but significantly lower levels of serum 1,25(OH)2D in comparison to patients with chronic ischemic disease despite similar levels of renal damage. In vitro, 1,25(OH)2D attenuated TNFalpha-induced MCP-1 expression by human proximal tubule cells. Our study indicates that renal inflammation is associated with decreased serum vitamin D metabolites and involves activation of the paracrine/autocrine vitamin D system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.