Abstract

The chiral Hamiltonian for twisted graphene bilayers is written as a $2\times2$ matrix operator by a renormalization of the Hamiltonian that takes into account the particle-hole symmetry. This results in an effective Hamiltonian with an average field plus and effective non-Abelian gauge potential. The action of the proposed renormalization maps the zero-mode region into the ground state. Modes near zero energy have an antibonding nature in a triangular lattice. This leads to a phase-frustration effect associated with massive degeneration, and makes flat-bands modes similar to confined modes observed in other bipartite lattices. Suprisingly, the proposed Hamiltonian renormalization suggests that flat-bands at magic angles are akin to floppy-mode bands in flexible crystals or glasses, making an unexpected connection between rigidity topological theory and magic angle twisted two-dimensional heterostructures physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call