Abstract

In-plane complex surface impedance of a Bi2Sr2CaCu2Oy single crystal was measured in the mixed state at 40.8 GHz.The surface reactance, which is proportional to the real part of the effective penetration depth, increased rapidly just above the first-order vortex-lattice melting transition field and the second magnetization peak field.This increase is ascribed to the decrease in the superfluid density rather than the loss of pinning.This result indicates that the vortex melting transition changes the electronic structure as well as the vortex structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call