Abstract

Sucrose produced in source leaves is the predominant carbon source for developing sink tissues in most higher plants. Consequently the rate of sucrose synthesis is likely to be important for sink development and final crop yield. Two sucrose biosynthetic enzymes are believed to possess regulatory properties with respect to the rate of sucrose synthesis: (i) cytosolic FBPase and (ii) sucrose phosphate synthase. To study the impact of reduced photosynthetic sucrose biosynthesis on plant growth and crop yield a cDNA clone encoding cytosolic FBPase was isolated from a potato leaf cDNA library and used for antisense experiments in transgenic potato plants. The cDNA clone cy-F1, containing an open reading frame of 1020 bp highly homologous (85%) to other known sequences of plant cytosolic FBPases, was cloned in reversed orientation between the 35S CaMV promoter and the octopine synthase polyadenylation signal. Out of 75 independent transformants five transgenic lines having 9 to 55% of the wild-type FBPase activity were chosen for further analysis. A 45% reduction of the cytosolic FBPase activity did not cause any measurable change in metabolite concentrations, growth behaviour or photosynthetic parameters of the transgenic plants. Inhibition of cytosolic FBPase activity below 20% of the wild-type activity led to an accumulation of 3-PGA, triose-phosphates and fructose-1,6-biphosphate in source leaves. This resulted in a reduced light-saturated rate of assimilation measured via gas exchange and a decreased photosynthetic rate under conditions of the leaf disc electrode with saturating light and CO2. Measuring photosynthetic carbon fluxes by labelling leaf discs with 14CO2 revealed a 53-65% reduction of sucrose synthesis whereas starch synthesis decreased only by 18-24%. The flux into the anionic and cationic fraction was not altered. Despite these changes steady-state sucrose concentrations were not effected in source leaves from transgenic plants. Starch accumulated by more than a factor of 3 compared with wild-type leaves and was degraded during the night. This provides strong evidence for the hypothesis that hexoses and/or hexosephosphates are exported out of the chloroplasts, thereby circumventing the limitation of sucrose biosynthesis caused by the inhibition of cytosolic FBPase in the dark. Accordingly, plant growth and potato tuber yield remained unaltered. From these data it can be concluded that a reduced photosynthetic sucrose biosynthetic capacity can be efficiently compensated without any reduction in crop yield under greenhouse or growth chamber conditions by changing carbon export strategy. Whether the same holds true for field conditions remains to be elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.