Abstract

In pulsed Doppler ultrasound systems, the ultrasound radiofrequency (RF) signals received can be employed to estimate noninvasively the time-dependent blood velocity distribution within and artery. The RF signals are composed of signals originating from clutter (e.g., vessel walls) and scatterers (e.g., red blood cells). The clutter, which is induced by stationary or slowly-moving structure interfaces, must be suppressed to get reliable estimates of the mean blood flow velocities. In conventional pulsed Doppler systems, this is achieved with a static temporal high-pass filter. The static cut-off frequency and the roll-off of these filters cause the culture not always to be optimally suppressed. This paper introduces a clutter removal filter that is based on Singular Value Decomposition (SVD). Unlike conventional high-pass filters, which take into account only the information of the temporal direction, the SVD filter makes use of the information of the temporal and spatial directions. The advantage of this approach is that it does not matter where the clutter is located in the RF signal. The performance of the SVD filter is examined with computer-generated Doppler RF signals. The results are compared with those of standard linear regression (SLR) filter. The performance of the SVD filter is good, especially if a large temporal window (i.e., approximately 100 RF signals) is applied, which improves the performance for low blood flow velocities, A major disadvantage of the SVD filter is its computational complexity, which increases considerably for larger temporal windows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.