Abstract

We report that the ion implantation of a small dose of Mo into a silicon substrate before the deposition of a thin film of Ti lowers the temperature required to form the commercially important low resistivity C54–TiSi2 phase by 100–150 °C. A lesser improvement is obtained with W implantation. In addition, a sharp reduction in the dependence of C54 formation on the geometrical size of the silicided structure is observed. The enhancement in C54 formation observed with the ion implantation of Mo is not explained by ion mixing of the Ti/Si interface or implant-induced damage. Rather, it is attributed to an enhanced nucleation of C54–TiSi2 out of the precursor high resistance C49–TiSi2 phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.