Abstract

A silicon chip designed to combine nanocalorimetry with scanning probe microscopy (SPM) has been realized. For the SPM application, as an additional requirement, a very low surface roughness of the scanned area becomes imperative. Several steps in the basic process flow are examined by atomic force microscopy (AFM) and modified in order to meet the surface roughness demands of a root mean square (rms) roughness below 1 nm as well as a negligible nanoparticle count. In particular, spin-on benzocyclobutene (BCB) layers are demonstrated to give a versatile means of achieving a surface that is smooth enough for calorimetry of nanometer-thin films while simultaneously allowing the investigation of nanometer scale morphological features by means of SPM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.