Abstract
This study investigates the effects of boundary layer combustion on skin friction reduction in a model scramjet combustor. The 4-equation RANS model (Transition SST model) is employed as the turbulence model and one experimental case which involves supersonic turbulent boundary layer combustion is used for validating the numerical simulation method. Then a wall jet device which can be used to inject hydrogen into boundary layer is designed and added to the lower wall of the combustor in the model scramjet engine. The numerical results showed that the optimal ratio between the primary fuel, producing thrust, and the wall jet fuel, used for drag reduction, for getting the largest skin-friction drag reduction when installing the wall jet device in the combustor, is 3:1. The study of modifying the location of the wall jet device showed that setting the wall jet position too close to the upstream or downstream could not get the maximum overall drag reduction. The installation position in the flow path depends on the coupling of primary fuel and wall jet fuel combustion. In practical scramjet design, the distribution ratio of primary to wall jet fuel and the location of wall jet device should be weighed to improve skin-friction reduction efficiency and overall engine performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.